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Chiral dynamics and B → 3π decay
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Abstract. We discuss our knowledge of the scalar sector of QCD and how it impacts the determination of
the CKM angle α from the isospin analysis of the B → ρπ decay.

PACS. 13.25.Hw Decays of bottom mesons – 11.30.Er Charge conjugation, parity, time reversal, and other
discrete symmetries – 12.39.Fe Chiral Lagrangians – 14.40.Cs Other mesons with S = C = 0, mass <
2.5 GeV

1 Introduction

CP violation has been established experimentally in the
K- and B-meson systems. In the standard model, this
can be explained in terms of one single phase, which leads
to complex entries in the CKM matrix. The unitarity of
this matrix may be represented in terms of various tri-
angles, one of them to be measured at the B factories.
Any violation of unitarity would be a signal of physiscs
beyond the Standard Model. However, to achieve the re-
quired accuracy to really test the relation α+ β + γ = π,
where α, β, and γ are the three angles of the triangle,
one has to be able to precisely calculate or eliminate
the final-state interactions of the mesons generated in
the various B decays. Here, we will be concerned with
the decay B → 3π, because the isospin analysis possi-
ble in B → ρπ decay allows to extract sin(2α) [1,2]. Re-
cent observations, however, have triggered the question
about a possible “hadronic pollution” in the ρπ phase
space. In particular, the E791 Collaboration has found
that half of the rate of D− → π−π+π− decay goes via
the D− → π−σ(500) → π−π+π− doorway state [3]. This
measurement was also considered as further evidence for
a light scalar-isoscalar meson, the elusive σ. Furthermore,
it was shown in ref. [4] that the inclusion of this channel
can improve the theoretical description of the ratio

R =
Br(B̄0 → ρ∓π±)
Br(B− → ρ0π−)

= 2.7± 1.2 , (1)

measured at CLEO and BABAR. Note that R � 6 at the
tree level in naive factorization. Since there is on-going
debate about the nature of the σ, we will address here the
following questions: What do we know about the scalar
sector of QCD? What is its impact on B → ρπ decay?
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2 The scalar sector of QCD

The scalar-isoscalar sector of QCD is highly interesting
because of its vacuum quantum numbers, and its direct re-
lation to the quark mass terms (explicit chiral-symmetry
breaking), the related σ-terms, and so on. Its most distinct
characteristics are the very strong final-state interactions
(FSI), signaled, e.g., by the rapidly rising isospin zero,
S-wave ππ phase shift δ00(s) or the observation that the
scalar pion radius, 〈r2S〉π � 0.6 fm2, is sizeably bigger than
the corresponding vector (charge) radius, 〈r2V 〉π � 0.4 fm2.
Note also that there is no direct experimental probe with
such quantum numbers. Therefore, theoretical investiga-
tions using different tools have been employed to deepen
our understanding of this sector, these are Chiral Pertur-
bation Theory (CHPT), resummation schemes consistent
with CHPT, unitarity, analyticity, . . . (like, e.g., the chiral
unitary approach [5]) and also dispersion relations. The
following general results emerge: First, a consistent pic-
ture of the scalar (pion and kaon) form factors is obtained,
and, second, all the light (non-strange and strange) scalar
mesons are dynamically generated in a large class of re-
summation schemes (see, e.g., ref. [6]), although this later
topic is still vigorously debated1. For the impact on the
B → ρπ decay, we fortunately only need the (non-strange)
scalar form factor of the pion, Γπ(s) (or, equivalently, the
σ → ππ vertex function Γσππ(s)), defined via

〈0|m̂(ūu+ d̄d)|πa(p)πb(p′)〉 = δabM2
π Γπ(s)

= N Γσππ(s) , s = (p+ p)2 .
(2)

1 Consequently, by “σ” we always mean a two-pion state
with total isospin zero and in a relative S-wave state, (ππ)S ,
understanding its dynamical origin in the strong pionic FSI for
these quantum numbers.
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Fig. 1. Real (left) and imaginary part (right) of the non-
strange scalar form factor of the pion. Solid line: chiral uni-
tary approach as discussed in the text, dotted/dash-dotted
line: CHPT to one/two loops, dashed lines: dispersive results
based on different ππ phase shift analyses [7].

The scalar form factor is shown in fig. 1 for the various
theoretical approaches mentioned above. We will use here
the result of the chiral unitary approach [8], which was
successfully tested, e.g., in J/Ψ → φππ(K̄K) decays. It is
worth to point out that the scalar form factor constructed
in [8] is systematically matched to the CHPT representa-
tion, and it embodies by construction the coupled channel
ππ/K̄K dynamics. It is also consistent with the dispersive
results of ref. [7]. Most importantly for the later discus-
sion, we remark that the form of the pion scalar form
factor is very different from a Breit-Wigner (BW) form
with a running width, as used, e.g., in [3]. This apparent
difference casts doubt on the recent conclusions of refs. [3,
4]. The situation is completely different for the pion vec-
tor form factor entering the ρπ intermediate state — it
can be described to good precision by a BW with running
width. More generally, the vector form factor can be re-
constructed from unitarity and analyticity and matched to
CHPT. The resulting vertex function does not differ signif-
icantly from a BW with running width (see ref. [9] for a de-
tailed discussion on this point and corresponding figures).

3 Evaluating B → ρπ in the presence of the
σπ channel

Our starting point is the effective |∆B| = 1 Hamiltonian
for the b → dqq̄′ decay:

Heff =
GF√
2


 ∑

j=u,c

λj

(
C1O

j
1 + C2O

j
2

)
− λt

10∑
i=3

CiOi


 ,

(3)

Table 1. Effective branching ratios (in units of 10−6) for the
B → σπ and the B → ρπ decay, computed at the tree level.
The form factors (f.f.) are defined as: BW = Breit-Wigner, RW
= BW with a running width, ∗ the form factors advocated here
[9].

δ (f.f.) B− → B− → B̄0 → B̄0 →
[MeV] σπ− (ρ0 + σ)π− σπ0 (ρ0 + σ)π0

200 (BW) 2.97 6.16 0.0258 0.516
300 (BW) 5.17 8.61 0.0457 0.940
200 (RW) 2.97 6.19 0.0258 0.475
300 (RW) 5.17 8.62 0.0457 0.855
200 (∗) 4.11 7.61 0.0396 0.508
300 (∗) 7.01 10.7 0.0663 0.916

with λq = VqbV
�
qq, Vij an element of the CKM matrix and

the operators are ordered such that the Wilson coefficients
obey C1 ∼ O(1), C1 > C2  C3,...,10. We evaluate the
resonance contributions to the B → 3π decay by using a
product ansatz. For the requisite amplitudes, this means

AR(B → π+π−π) = 〈(R → π+π−)π|Heff |B〉
= 〈Rπ |Heff |B〉︸ ︷︷ ︸

m.e.

ΓR→ππ︸ ︷︷ ︸
v.f.

, (4)

where we compute the matrix element (m.e.) in factor-
ization (including penguins) in the same way it was done
in refs. [4,10] for a crisp comparison (detailed formulae
can be found in ref. [9]). To ascertain the impact of the
B → σπ channel to B → ρπ decay, we combine the
decay channels at the amplitude level, M = Aσ(B →
π+π−π) +Aρ(B → π+π−π) , and then integrate over the
relevant three-body phase space to compute the effective
B → ρπ branching ratios. The main new ingredient is the
vertex function (v.f.) for which we employ in the σπ chan-
nel the scalar form factor discussed earlier and the for the
ρπ mode the vector form factor from ref. [11]. The effective
branching ratios for the B → ρπ decay computed at the
tree level (and also including penguins following ref. [10])
lead to RT � 5.5 (RT+P � 5.1). Neither this ratio nor the
calculated branching ratios depend in any significant way
on the various vector form factors employed. The B → σπ
branching ratios are collected in table 1. The computed
values of

R � 2.0 . . . 2.6 (5)

are consistent with the empirical value of Rexp = 2.7±1.2,
albeit the errors are large. The reduction in R is mostly
due to the effect of the σπ channel on the B− decay mode.
Turning to the B → σπ0 decay, we see that the contribu-
tion of the σ-meson to the B0(B̄0) → ρπ decay is much
smaller — with the scalar form factor we advocate, the
effect is some 10%. Interestingly the σ has a tremendous
impact on the B− → ρ0π− decay (very similar to the
large effect in D− → π+π−π−), and a relatively modest
one on the B̄0 → ρ0π0 decay. Let us emphasize that we
have realized our numerical analysis at the tree level, so
that the precise numbers but not the trends will change
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when a more refined analysis is performed. It is the rela-
tive size of the penguin contributions in the B̄0 → σπ0 and
the B̄0 → ρ0π0 decay which is of relevance to the isospin
analysis to extract α. The presence of the σπ0 final state
in the ρ0π0 phase space can break the assumed relation-
ship between the penguin contributions in ρπ and thus
mimic the effect of isospin violation — alternatively we
can expand the ρπ analysis to include the σπ channel. It
is worth noting that the σπ0 and ρ0π0 contributions can,
to some measure, be distinguished. Certainly the σπ0 and
ρπ0 contributions behave differently under the cut on the
invariant mass of the π+π− pair. Moreover, making a cut
on the helicity angle θ, ought also be helpful in separating
the ρ0 and σ contributions. E.g. for B− → ρ0/σ π−, the
ρ0π contributions roughly follow a cos2(θ) distribution,
whereas the σπ contributions are quite flat, save for the
bump at backward angles resulting from the u-channel
contribution ∼ Γσππ(u). Cutting on the helicity angle θ
should also help disentangle the contributions from some
of the intermediate B∗- and B0-resonances, discussed first
in ref. [10]. The contributions of such non-resonant inter-
mediate states to the ρπ channels has recently been scru-
tinized in ref. [12], where it was shown that the energy
dependence of the intermediate heavy-meson propagator
can lead to a drastic suppression of such contributions and
thus the lowering of the value for R due to the σ persists
in such a refined analysis.

4 Summary and outlook

In this paper, we have scrutinized the role of the σ-meson
in the B → ρπ → 3π decay, understanding its dynamical
origin in the strong pion-pion final-state interactions in
the scalar-isoscalar channel. The presence of the σπ0

contribution in the ρ0π0 phase space is important in
that it can break the assumed relationship between
the penguin amplitudes, consequent to an assumption
of isospin symmetry. In this, then, its presence mimics
the effect of isospin violation. The salient results of
our investigation can be summarized as follows: i) We
have considered how SM isospin violation can impact
the analysis to extract α in the B → ρπ decay. Under
the assumption that the |∆I| = 3/2 and |∆I| = 5/2
amplitudes share the same weak phase, the presence of
an additional amplitude of |∆I| = 5/2 character, induced
by isospin-violating effects, does not impact the B → ρπ
analysis in any way. This is in contradistinction to the
isospin analysis in B → ππ. Thus the isospin-violating
effects of importance are those which can break the
assumed relationship between the penguin contribu-
tions. ii) The scalar form factor can be determined
to a good precision by combining the constraints of
chiral symmetry, analyticity, and unitarity. The form
factor we adopt describes the appearance of the f0(980)

as well, so that the shape of the f0(980) contribution in
B → f0(980)π → 3π, e.g., should serve as a test of our
approach. We emphasize that the resulting scalar form fac-
tor is very different from the commonly used Breit-Wigner
form with a running width. This is in stark contrast to the
vector form factor, which is dominated by the ρ-resonance.
In that case, one can construct simple forms that fit the
theoretical and empirical constraints. iii) Remarkably, the
impact of the σπ channel on the ratio R, cf. eq. (1), is
huge. The numbers we find for R are in agreement with
the empirical ones, given its sizeable experimental uncer-
tainty. This underscores the suggestion made, as well as
improves the calculations done, in ref. [4]. Our analysis is
based on consistent scalar and vector form factors. This
conclusion persists if one includes non-resonant B∗, B0 in-
termediate states [12]. iv) On the other hand, the impact
of the σπ channel on the B → ρπ isospin analysis is merely
significant. Varying the cuts on the ππ invariant mass and
helicity angle θ should be helpful in disentangling the var-
ious contributions. v) We have shown that one can expand
the isospin analysis to include the σπ channel because it
has definite properties under CP . This may be necessary
if varying the cuts in the ππ invariant mass and helicity
angle θ are not sufficiently effective in suppressing the con-
tribution from the σπ0 channel in the ρ0π0 phase space.
This work is merely a first step in exploiting constraints
from chiral symmetry, analyticity, and unitarity in the de-
scription of hadronic B decays. In particular, the contribu-
tion of the “doubly” OZI-violating strange scalar form fac-
tor and its phenomenological role in factorization breaking
ought be investigated.
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